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Abstract 
 
The extremely high resolution in large d-spacing range at relatively short flight path is the most 
positive result application of the correlation technique (pseudorandom or Fourier) in neutron 
diffractometry. The reverse time-of-flight Fourier (RTOF) method is especially promising after it 
has been developed to a high degree of perfection at a high-flux long-pulse neutron source, the 
IBR-2 reactor in Dubna, where the high resolution Fourier diffractometer (HRFD) has been 
constructed. The HRFD d-spacing resolution depends on the maximum frequency of neutron 
beam intensity modulation, amounts to the value of ∆d/d ≈ 0.001 in a wide dhkl range (0.7 – 5 Å) 
for the flight path between the Fourier chopper and sample position as short as 20 m, and it can 
be improved, in principle, to ∆d/d ≈ 0.0003. The dominating problem that has been revealed 
during the operation of HRFD instrument is a complicated shape of diffraction lines, which 
could be asymmetric and usually displays small negative deeps on one or both sides of the 
diffraction peak. In the paper the experience of the HRFD operation at the IBR-2 pulsed reactor 
is analyzed and a possible solution of some technical problems is discussed. In addition, a new 
concept of the HRFD detector is suggested making it possible to considerably increase the 
detector solid angle.  
 

1. Introduction 
 

The resolution of a neutron TOF diffractometer mainly depends on the width of neutron 
pulse and the length of flight path. The resolution of high level, ∆d/d ≈ 0.001 or better, can be 
easily obtained at spallation sources of the ISIS type if a flight path amounts to 50 meters or 
longer. The main drawback of such instruments is too short d-spacing range, which is connected 
with pulse overlap problem. It can be overcome with the use of the correlation technique – 
pseudorandom [1] or RTOF-Fourier [2]; with both of that the very high resolution can be 
obtained at comparatively short flight path.  

Although the correlation technique is known during many years, these methods are not 
widely spread and they are not very popular. Indeed, at continuous neutron sources (nuclear 
reactors) their application is not too effective because of a high level of “correlation background” 
which is proportional to the total amount of the scattered neutrons and independent of the time of 
flight. At spallation short-pulse sources such as ISIS or SNS, a conventional high-resolution 
TOF-diffractometer shows a lot of advantages, and nobody wants to replace it for the much more 
technically complicated and not so understandable Fourier diffractometer. 

Nevertheless the potentials of correlation technique are good enough and especially it is 
related to the Fourier method, which allows to optimize the intensity-resolution ratio. The most 
promising is the construction of a Fourier-diffractometer at high-flux neutron source with pulse 
width of ∆t0 > 300 µs. Although at present only one long-pulse source – the IBR-2 reactor in 
Dubna is in real operation, there exist plans to construct the future ESS and may be the second 
target station at SNS as long-pulse neutron sources with ∆t0 about or even longer than 103 µs. 
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In this paper, the most important results obtained during operation of the high-resolution 
Fourier diffractometer (HRFD) at the IBR-2 reactor and its current status are reported, and 
possible solutions for some technical problems is discussed. In addition, a new concept of the 
HRFD detector is suggested making it possible to considerably increase the detector solid angle 
and the ideas for improving of the HRFD resolution and peak shape correction are presented. 
These improvements may transform the Fourier technique into the most prospective one for 
construction of neutron diffractometer with extremely high resolution (∆d/d ≈ 0.0003) at long-
pulse sources.  

 
2. A schematic representation of the Fourier diffractometry  
 
The Fourier method is based on modulation of the neutron beam intensity by the fast 

Fourier chopper, which consists of the rotating disk (rotor) and the stationary part (stator) with 
the same modulation pattern of radial sectors transparent and non-transparent for thermal 
neutrons (Fig. 1). The idea to use the Fourier chopper for a significant increase in the efficiency 
of diffraction experiment appeared in the beginning of 1970-ies [3]. It was shown that at fixed 
frequency of intensity modulation the transmission function of the chopper can be roughly 
represented as Qc(t) ~ 1 + sin ωt and there are two main contributions to the measured intensity: 
the first one is proportional to the Fourier harmonic of the coherent elastic scattering cross-
section and the second one does not depend on neutron energy and is proportional to the total 
number of scattered neutrons. Performing measurements at varied frequencies (with discrete or 
continuous distribution) one can reconstruct scattering cross-section of a powder sample. The 
final pattern consists of narrow peaks (diffraction lines) and constant background, which is often 
referred to as a correlation background.  

 
 
 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 1. On the left: The Fourier chopper schematic representation, including a rotor with 
transparent and nontransparent for thermal neutrons strips and a fixed stator. At the bottom, the 
chopper transmission function and the corresponding binary signals for the RTOF analyzer are 
also shown. On the right: The Fourier chopper picture. The revolving disk (∅50 cm) in the 
shroud and the motor (7.5 kW) are seen. The stator is situated at the right side of the disc.     
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Technical troubles related to the necessity for very high degree of chopper speed 
stabilization hampered the realization of the baseline idea. Successful practical realization of the 
neutron Fourier-diffractometry became possible after the so-called reverse time of flight (RTOF) 
method of data acquisition was introduced by Finnish physicists [4]. The basic idea of the RTOF 
method is an on-line check, for each detected neutron, of whether the registration probability is 
high or low. The check is realized by reverse analysis of neutron source and Fourier chopper 
states at the time the neutron passed through the corresponding points of the flight path. By 
carrying out neutron detection with the chopper speed continuously changing according to the 
particular law, and recording only those neutrons with a high probability of registration in the 
analyzer’s memory, one can get the TOF distribution of  elastically scattered neutrons, i.e., the 
conventional TOF diffraction pattern. 

This design can be realized at both steady state reactor [5] and at pulsed neutron source 
[2], for which the measured neutron intensity can be presented (in simplified form) as: 

 

I(τ) ∼  ± ∫ Rs(τ -τ´)Rc(τ-τ´)σ(τ´)dτ´ + c ∫ Rs(τ - τ´)σ(τ´)dτ´ + B(τ),  (1) 

 
where Rc is the resolution function of the Fourier chopper, Rs is the function describing the 
neutron pulse from the source, σ is the coherent scattering cross section of the sample, B is the 
conventional background, and c is some constant close to 1. For a perfect crystal for which σ ∼ 
Σδ(τ - τ0i), where τ0i corresponds to the Bragg peak positions, and if the width of the function Rc 
is noticeably less than the width of Rs, i.e., Wc<<Ws, the first term in (1) represents a narrow 
peak with a width close to Wc and the second term also describes a peak-like distribution, but 
with the width of the peaks close to Ws. The last is the correlation background in the case of 
pulsed source. By recording simultaneously I(τ)+ and I(τ)- by two analyzers and subtracting them 
one can obtain high resolution diffraction pattern without wide peaks from the source (Fig. 2). 
The sum of I(τ)+ and I(τ)- is (approximately) distribution of dispersions for high resolution 
pattern. 
 

 
Fig. 2. А part of the diffraction pattern from La2CuO4 containing (400)/(004) reflex. At the 
bottom, the spectra measured by two analyzers, consisting of broad and narrow maxima, are 
shown. The upper part is obtained after subtraction of Analyzer-2 from Analyzer-1 showing the 
high resolution pattern with ∆d/d = 0.0014. 
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The correlation background depends essentially on the width of the neutron pulse from 
the source and roughly can be presented as an integral of the neutron flux on the sample over the 
wavelength range ∆λ equivalent to Ws: 

 B ∼ ∫  Rs(τ - τ´)σ(τ´)dτ´ ∼ 
∆λ
∫ Φ(λ)dλ = Φ(λ)∆λ.    (2) 

where Φ(λ) is the wavelength distribution of the neutron flux on the sample. At the Fourier 
diffractometer at a steady state reactor, the correlation background does not depend on λ and is 
proportional to the total neutron flux on the sample. Accordingly one can estimate the ratio of the 
total flux and Φ(λ)∆λ (Fig. 3), which shows the decrease of correlation background for a pulsed 
source. This effect is especially huge at the low-intensity parts of the spectrum. 
 

 
 
Fig. 3. The ratio of the correlation background in the Fourier diffractometer at a steady state and 
a long pulse neutron sources. The pulse width of LPS corresponds to the wavelength uncertainty 
∆λ ≈ 0.02λ0, where λ0 is the parameter of the Maxwellian distribution. 
 
 Calculation of the resolution function for HRFD is the same as for conventional TOF 
diffractometer for powders: 
  

R = ∆d/d = [(∆t0/t)
2 + (∆θ/tgθ)2 + (τ0/n)2 + (∆L/L)2]1/2,   (3) 

 
where ∆t0 is the effective width of the neutron pulse, t = 252.778Lλ is the total time of flight (in 
µsec), L is the flight path from the source (Fourier chopper) to the detector (in m), λ is the 
wavelength of the neutron (in Å), θ is the Bragg angle, τ0 and n are the width and number of 
channels of the TOF analyzer. The first term is the time-of-flight uncertainty, the second 
includes all the geometrical uncertainties connected with scattering at different angles, ∆ means 
the full width at half maximum. For limited linear size of sample, detector with thin registration 
layer, and TOF analyzer with small enough channel width the contributions of the third and 
fourth terms in (3) are usually small in comparison with the first two. 
 The first term in (3) can be written as  
 
 Rt = ∆t0/t = ∆t0/(252.778 Lλ) = ∆t0/(505.556 Ldsinθ),   (4) 
 
where ∆t0, L and λ or d are expressed in microseconds, meters, and Å, correspondingly. It can be 
shown that relation is valid: 

R(t) ≈ Ω-1

0

Ω

∫ g(ω)cos(ωt)dω,        (5) 



 

5 

where g(ω) is the distribution of modulation frequencies of the neutron beam, which are 
distributed between zero and maximal value Ω. For maximal chopper rotation frequency νmax and 
number of chopper transparent slits N, Ω is equal to 2π·N·νmax. The width of R(t) can be roughly 
estimated as 2π/Ω, and thus ∆t0 ≈ 2π/Ω is effective pulse width, which must be used in (3). For 
νmax = 150 Hz and N = 1024 (designed parameters of Fourier chopper at HRFD) one can obtain 
that ∆t0 ≈ 7 µs. For this ∆t0 and flight path L = 20 m the TOF component of the resolution 
function is about 0.00035 (if d = 2 Å). This is nearly 2 times better than for conventional TOF 
diffractometer at 100 m flight path at the ISIS-type neutron source. Since the effective neutron 
pulse does not depend on wavelength, the Rt  is proportional to 1/d. 

The geometrical part of the resolution function, Rθ = ∆θ/tgθ, depends mainly on 
collimation of the incident neutron beam, sample and detector sizes. For the backscattering 
geometry, i.e. θ close to 90°, the Rθ can be quite small and roughly the same as Rt. The best 
compromise between solid angle of detector and its contribution to the resolution can be 
obtained if the time focusing conditions are satisfied [6].  
 

3. High Resolution Fourier Diffractometer at the IBR-2 pulsed reactor 
 
The pulse nature of the IBR-2 reactor in Dubna is provided by mechanical modulation of 

its reactivity, the pulse width is around 215 µs for fast neutrons, ≈340 µs for thermal neutrons 
and it is practically independent on neutron energy. Constructed by collaboration of FLNP 
(Dubna), PNPI (Gatchina), and VTT (Espoo, Finland), the High Resolution Fourier 
Diffractometer (HRFD) is intended mainly for structural studies of powders. The first high 
resolution diffraction patterns were obtained in 1992 [7] and regular operation of HRFD was 
started in 1995. The original design, principle of operation, and working parameters of the 
HRFD are described in details in paper [8]. HRFD upgrading was reported at ICANS 
conferences [9, 10] as well. 

At present HRFD (Fig. 4) is situated at the beam-line with comb-like water moderator. In 
future at the modernized IBR-2M reactor at this beam-line the combined moderator consisting of 
warm (water) and cold (mesitylene at 30 – 50 K temperature) parts will be used. This will lead to 
the increase of the total flux by a factor of 2 and for the cold neutrons with λ > 4 Å by more than 
10 times, and also to the more uniform spectral distribution of the incident beam.  

 

 
 

Fig. 4. The lay-out of HRFD at the IBR-2 pulsed reactor. The most important functional units are 
indicated. The distance between Fourier-chopper disk and sample position is exactly 20,000 mm. 

 
For real polycrystalline sample with some level of microstresses and with limited size of 

coherently scattered domains the dependence of the diffraction peak width on d-spacing is: 
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W2 = C1 + C2 d
 2 + C3 d

 2 + C4 d
 4,      (6) 

here C1 and C2 are constants connected with the resolution function (3), which can be refined 
from data obtained with standard sample, C3 ~ (∆a/a)2 and C4 ~ 1/lcr

2 are connected with 
microstress and domain size, correspondingly. It is illustrated by Fig. 5, where one can see that 
for standard samples Al2O3 and Na2Al 2Ca3F14 (NAC), for which the С3 and С4 coefficients are 
very small, the dependence of W2 on d 2 is indeed the linear function. For the CaCuMn6O12 
powder the larger slope of the line is connected with microstresses in this material (the С3 
coefficient is not small), while for fine-crystalline Ni the size effect is important. 
  

 
Fig. 5. Dependences of peak width on d-spacing, measured at HRFD. The bottom curve was 
measured with Al2O3 (crosses) and NAC (diamonds). It corresponds to the HRFD resolution 
function. In the CaCuMn6O12 powder, noticeable microstrains are present. For the fine Ni 
powder (<d> ≈ 380 Å), the size effect is evident. 
 

The С1 constant in (6) can be reliably determined from dependence of diffraction peak 
width on maximal speed of the Fourier chopper, Vm ~ 1/Ω, as С1 ~ ∆t0 ~ 1/Vm. In Fig. 6 the 
corresponding function, measured at HRFD, is shown. It is seen that the experimental data fairly 
correspond to calculation. It can be conclude also that, in principle, the TOF contribution to the 
resolution function could be as small as ~0.0002 at d = 2 Å, if Fourier chopper speed would be 
increased to ~11·103 rpm and flight path elongated to ~30 m.  

 

 
 
Fig. 6. TOF contribution in the full width as a function of 1/Vm. The points were measured at 
maximal Fourier chopper speed from 500 to 6000 rpm. The experimental points (Ge powder) 
and least-square fit (continuous line) are shown.  
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The intensities of diffraction lines measured with HRFD can be described by the same 
formulae as for the conventional TOF diffractometer and consequently the Rietveld method can 
be used for their analysis. The analysis is somewhat more complicated due to the unusual peak 
shape, which becomes evident for high statistics (Fig. 7). As it was established, the peak shape 
depends on the frequency distribution of intensity modulation, adjustment of the pick-up signal 
phase, counts correlations in the neighboring TOF channels, and can be asymmetric, contain 
some negative deeps, or show both these features. To overcome this problem, the specialized 
program package MRIA [11] has been developed, which includes the possibility to use 
experimentally measured two-sign peak-shape model. The processing of data obtained with 
standard samples (Al2O3, NAC) shows good coincidence between experimental and calculated 
profiles (Fig. 8), as well as between the obtained from HRFD structural parameters and the 
literature data.  

 
Fig. 7. A typical Bragg peak for a La2CuO4 single crystal measured at Vm = 6000 rpm with the 
TOF channel width of 2 µs. The relative width (∆n/n, n is the channel number of TOF analyzer) 
of this peak is about 0.0009. Small negative deeps on both sides of the peak are discussed in the 
next section. 

 
Fig. 8. The diffraction pattern of the NAC sample (with CaF2 impurity phase) measured at Vm = 
6000 rpm and processed by the Rietveld method. The difference curve is normalized on the 
mean-square deviation. 
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During last years the structures of various compounds have been studied at HRFD: the 
high-temperature superconductors (Y-123, Hg-1201, La2CuO4+x), hydrogen containing materials 
(Li 2BeD4, CeNi3Dx, Ni(OH)2), complex perovskite-like oxides (A1-xA´xMnO3, A2GaMnO5+x, 
Ca(Cu,Mn)7O12), various inorganic compounds (LiCsSO4, Sr11Re4O24, K3PO4). The short review 
of HRFD’s scientific results is published in Ref. [12]. Until the appearance of the Fourier stress 
diffractometer (FSD) at the IBR-2 pulsed reactor, the HRFD was also used for the macro- and 
microstresses determination in bulk materials and components. Besides, the HRFD high 
resolution helps to measure the anisotropic peak broadening connected with non-spherical shape 
of crystallites (Fig. 9).  

 

 
Fig. 9. Dependence of width of diffraction peaks of β-Ni(OH)2 (for different values of l-index) 
and Mg(OH)2 (for all hkl) as a function of dhkl. Solid lines correspond to approximation of 
experimental points by 4 order polynomial, dashed line is resolution function. Contrary to the 
Mg(OH)2, there is a strong dependence of β-Ni(OH)2 peak widths on l indices, which is 
connected with small size of coherent domains along c-axis. The analysis shows that domains 
have disk-like shape with dimension in basic plane about 400 Å and in perpendicular direction 
about 150 Å.  

 
4. Analysis of a peak-shape problem 
 
As it was mentioned, one of the most pressing problem for HRFD is the complicated 

peak shape of the measured diffraction lines, which is mainly connected with TOF part of the 
resolution function, Rτ(τ). In principle, the transmission function X(ω)(t) and correctly phased 
pick-up signal Y(ω)(t), shown in Fig. 1, must provide the “Gaussian” shape of the Rτ(τ) function. 
But the simplified relation (5) is valid if two basic conditions are fulfilled:  

• there is no phase mismatch, δ, between X(ω)(t) and Y(ω)(t), 
• there is no amplitude distortion in frequency window, g(ω). 

For analyzing these conditions let us write the more general and correct relation for Rτ(τ) 
(details see in Refs. [13-16]): 
 

[ ]∑
∞

=

⋅⋅+⋅⋅⋅=
1

)()sin()()cos(
1

)(
r

SrCr rFbrrFar
C

R τδτδττ    (7) 

 
Here C is normalization constant, δ is phase mismatch between X(ω)(t) and Y(ω)(t), ar are the 
Fourier harmonics for the X(ω)(t) and Y(ω)(t) for δ = 0, br are the same, but for δ = π/2. The FC(rτ) 
and FS(rτ) functions are defined as: 
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In practice, two values of δ are important:  

- δ ≈ 0, Rτ(τ) is even and close to the FC(rτ) function, which can be a Gaussian; 
- δ ≈ π/2, Rτ(τ) is odd and close to the FS(rτ) function, which can be the first derivative of a 

Gaussian. 
For δ ≈ 0 the second term in (7) can be considered as a small distorting factor and vice versa for 
δ ≈ π/2 the distortion of the peak shape are connected with the first term in (7).   
 For the triangle-like transmission function X(ω)(t) and square-like pick-up signal function 
Y(ω)(t) (as it is shown in Fig. 1), the coefficients ar and br are: 
 

)2/sin(
1
3

πr
r

ar ⋅= ,       (10) 

 

)2/(sin
1 2
2

πr
r

br ⋅= ,       (11) 

 
For these ar and br the first three harmonics (r = 1, 3, 5) for both terms in (7) are shown in Fig. 
10. The resolution function Rτ(τ) in this case is very close to the Gaussian function with 
distortions not more than 3% for δ = 0. If there exists any phase mismatch, the additional 
distortions would be proportional to tg(δ). 

 
 

 
 

 
 
 
 
 
 
 
 
 
 
 
Fig. 10. (a) The term ar·FC(rτ) in formula (7) for the TOF part of the resolution function Rτ(τ). 
The members with r = 1, 3, 5 are shown (for r = 3 and 5 the coefficient 10 was introduced). (b) 
The term br·FS(rτ) in formula (7) for Rτ(τ). The members with r = 1, 3, 5 are shown (for r = 3 
and 5 the coefficient 5 was introduced). 

 
Unfortunately, the perfect phase synchronism between X(ω)(t) and Y(ω)(t) is hard to be 

achieved. Moreover, as it results from our experience there is a long-term (weeks range) 
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instability in the magnitude of the phase mismatch. The effect of the phase mismatch is shown in 
Fig. 11, where the results of model calculations for Rτ(τ) are presented. One can see that for δ ≠ 
0 the peak shape becomes asymmetric. By eye this effect is visible if δ  ≈ 0.1 rad (≈6º) or more. 
From this, the acceptable value of angle error (∆) in the position of the pick-up signal transducer 
can be estimated. Taking into account that δ is related to the 2π period of the X(ω)(t) and Y(ω)(t) 
functions and the number of periods for one chopper rotation in our case is equal to 1024, it can 
be obtained that ∆ must be smaller than δ /(2π ·1024). It means that the asymmetry of the Rτ(τ) 
would not be seen if ∆ ≤ 1.5·10-5 rad ≈ 3″. Realization of so high stability of mechanical units is 
not simple task at present. 
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Fig. 11. The TOF part of the resolution function Rτ(τ) calculated according (7) for three values of 
phase mismatch δ (0, 0.25, -0.25). It was supposed that the frequency window is exactly 
corresponding to g(ω).  
 

As it follows from the formula (7), in addition to “phase” distortions the Rτ(τ) function 
the “amplitude” distortions can affect the peak shape. They are connected with the aberration of 
the frequency window g(ω) from the expected distribution. For instance, one of the reasons of 
this aberration is the dependence of the transmission of the Fourier chopper on its speed (Fig. 
12). The change of transmission is superimposed with g(ω), which leads to the decrease of the 
contribution of high frequencies and is accompanied by the increase in the peak width.    

 
Fig. 12. The “collimation” effect of narrow rotating slits leads to the dependence of the 
transmission function on rotation frequency and neutron wavelength. 

 
As it is demonstrated in Fig. 7 diffraction lines measured with high statistics contain the 

negative deeps at both sides. The model calculation shows that such peak shape is realized if the 
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contribution of low frequencies in g(ω) is slightly suppressed. As an example in Fig. 13 the peak 
with the negative deeps is shown, which was calculated for distribution ga(ω) = g(ω)·(kω/Ω +p) 
with k = 0.75 and p = 0.25. The additional factor (kω/Ω + p) just suppresses the lowest 
frequencies as it is shown by red curve in Fig. 14. In practice it can be connected with non-zero 
dead-time of the electronic system.  
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Fig. 13. The TOF part of the resolution function Rτ(τ) calculated according (7) for three values of 
phase mismatch δ (0, 0.135, -0.135). Instead of the frequency window g(ω) the function 
g(ω)·(0.74ω/Ω + 0.25) (shown in Fig. 14) was used for calculations. 
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Fig. 14. The frequency window g(ω) (blue curve) providing the Gaussian peak shape. By the red 
curve the ga(ω) = g(ω)·(0.74ω/Ω + 0.25) function with suppressed low frequency part is shown.   
 
 This peak-shape problem could be solved if the so called “list-mode” (time stamped) data 
acquisition system is used. In this mode, the electronics assigns to the each detector count several 
identifiers and the absolute time passed from the start of the experiment. As identifiers are 
written in the two 32 bits words and include detector element number, indicators for chopper 
pick-up signal passing up and down, indicator of the source start pulse, and indicators of 
experiment start and finish. One of the function of the second word is extending of the time 
counter up to 1·106 seconds.  

In contrast to the existing on-line analyzer, no real diffraction pattern is written in 
memory. In the list-mode, the absolute time of a detector count is fixed with high precision (32 
nsec) and is written together with indicators of an event as raw data on the disk. Also, any 
number of independent detector elements can be included in the system, which is important for 
the detectors with large solid angles. Besides, the list-mode offers the possibility the subsequent 
data processing by introducing of various algorithms. In particular, the phase shift of the pick-up 
signal can be calculated and inserted; any deviation from specified frequency window can be 
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fixed etc. Thus, the new system of Fourier data acquisition makes it possible a posteriori 
correction of the peak shape. 
 

5. New HRFD BS detector: maintaining resolution for larger solid angle 
 

To ensure high intensity, it is necessary to have a large solid angle of the detector and, at 
the same time, its geometrical contribution to the resolution function must not exceed the TOF 
component to secure a high-resolution capability. At present the HRFD back-scattering (BS) 
detector system includes two banks located symmetrically relative to the incident neutron beam 
at mean scattering angles of ±152°. Each detector consists of 32 scintillation plates of the NE902 
type of 1 mm thickness. The total area of both detectors is equal to 0.48 m2, which corresponds 
to 0.2 sr solid angle. The plates are situated on surface of rotation around the beam axis in 
accordance with time focusing condition. From the resolution point of view this detector is fully 
satisfying the desired conditions, but its solid angle is certainly too small to be state-of-the-art.   

 A new wide-aperture BS detector (Fig. 15) for HRFD with solid angle of about 1.5 sr is 
under construction now. The detector has the ring-like structure; each ring is divided on several 
independent sections (166 sections), which cover the total area of 13.5 m2. The ZnS(Ag)/6LiF 
scintillation screens of 0.42 mm thickness with wavelength shifting fibers readout are used as 
detector elements. Being flexible, the scintillation screen allows each element of the detector to 
approximate the time focusing surface (TFS) for the scattered neutrons with necessary accuracy. 
The design of the detector is based on our experience in construction of the multi-element 
detectors with combined geometrical-electronic focusing for FSD instrument at the IBR-2 
reactor [17].  
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Fig. 15. The schematic view of the new ZnS(Ag)/6LiF back-scattering detector (side and front 
view). Detector consists of 8 rings, divided on 166 elements. Each element is focused 
geometrically. The total solid angle of the detector is close to 1.5 sr, the whole screen area is 
equal to 13.5 m2. 
 

The sensitive layer of each detector element is well tailored to the particular TFS, which 
is characterized by individual parameters depending on the solid angle ΩR, Bragg angle θR, and 
incidence angle αR for neutrons striking the screen. Diffraction patterns measured by the detector 
rings will be electronically focused into the same time-of-flight scale using recently developed 
technique [18]. The uncertainties in the flight path (∆Lη/L, η is number of a ring) arising due to 
the inaccuracy in matching of the screen and TFS and the screen thickness are the main factors 
defining the detector contribution to the resolution function. The principal problem in the 
accurate matching of the screen and TFS originates from the possibility to bend a screen only in 
one direction, while TFS is curved in two perpendicular directions (saddle-point surface). In Fig. 
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16, the parameter 2.35ση=∆Lη/L is illustrated for all detector rings for several sample 
dimensions. One more important factor that should be taken into account is the dependence of 
the detector efficiency on the ring number (Fig. 17), which is connected with difference in αR 
parameters.  
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Fig. 16. The uncertainty of the flight path as a function of detector ring number and diameter of 
sample container.  
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Fig. 17. Efficiency of neutron detection as a function of of detector ring number and neutron 
wavelength. 
 
 The geometrical contribution to the HRFD resolution function (3) is connected also with 
the incident beam divergence. This contribution varies from ring to ring due to the differences in 
the Bragg angles, θR. The beam divergence ∆θ can be regulated by putting collimator before the 
sample. The simple calculations show that the geometrical contribution from the whole detector 
can be as small as 5·10-4 if sample of 2.5 mm diameter and collimator with 2.5 mm slit and 1.1 m 
length are used.  
  

6. Conclusions 
 

The Fourier diffractometer, compared to a conventional TOF machine, ensures obtaining 
a very high resolution at a quite short flight path allowing the neutron flux to be increased and 
the cost of the instrument to be reduced. Also, it is important that its resolution (as for TOF 
mashine) only slightly depends on dhkl being practically constant in the large d-spacing range. 
The pulse overlap problem, which is so upsetting for high resolution TOF-diffractometers with 
long flight paths, does not exist for the Fourier diffractometer. 
 From technical point of view the only additional unit of HRFD in comparison to a 
conventional TOF-diffractometer is a Fourier chopper with a motor control system, which is, in 
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principle, quite simple device. It should be noted also, that it does not require a synchronization 
of its rotation with the neutron source. The only pressing problem requiring special attention is a 
peak shape, which, as we hope, can be solved by introducing the list-mode of data acquisition.  
 With HRFD the resolution level of 9·10-4 has been practically achieved for chopper – 
sample distance of 20 meters and chopper rotation speed of 6·103 rpm. The level of 3·10-4 can be 
definitely achieved for slightly faster Fourier chopper (11,000 rpm) and a bit longer flight path 
(30 meters) at least for several internal rings of the new back-scattering detector. These 
improvements could transform the Fourier technique into the most prospective one for 
construction of neutron diffractometers with resolution of about 0.0003 at pulsed neutron 
sources. At least, this technique can be considered as the real alternative to the long-flight-path 
and to the multi-chopper diffractometers. 
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